June 12 Q2

2 (a)	The nucleus of a particular atom has a <i>nucleon number</i> of 14 and a <i>proton number</i> of 6.		
2 (a) (i)	State what is meant by nucleon number and proton number.		
	nucleon number		
	proton number		
	(1 mark)		
2 (a) (ii)	Calculate the number of neutrons in the nucleus of this atom.		
2 (a) (iii)	answer =(1 mark) Calculate the specific charge of the nucleus.		
	answer =Ckg ⁻¹ (3 marks)		

2 (b)	The specific charge of the nucleus of another isotope of the element is $4.8\times10^7~Ckg^{-1}$.
2 (b) (i)	State what is meant by an isotope.
	(2 marks)
2 (b) (ii)	Calculate the number of neutrons in this isotope.
	answer =
	(3 marks)

Jan 13 Q1

1	(a)	Name the constituent of an atom which	
1	(a) (i)	has zero charge,	
1	(a) (ii)	has the largest specific charge,	(1 mark)
1	(a) (iii)	when removed leaves a different isotope of the element.	(1 mark)
1	(b)	The equation	(1 mark)
		$^{99}_{43}$ Tc $\rightarrow ^{A}_{Z}$ Ru $+^{0}_{-1}\beta$ + X	
		represents the decay of technetium-99 by the emission of a β^- particle.	
1	(b) (i)	Identify the particle X.	
			(1 mark)
1	(b) (ii)	Determine the values of A and Z.	
		A =	
		Z =	(2 marks)
1	(b) (iii)	Calculate the specific charge of the technetium–99 ($^{99}_{43}$ Tc) nucleus. State an appropriate unit for your answer.	
		specific charge = unit	(4 marks)

June 13 Q1

1		An atom of calcium, $^{48}_{20}$ Ca, is ionised by removing two electrons.	
1	(i)	State the number of protons, neutrons and electrons in the ion formed.	
		protons	
		neutrons	
		electrons	
1	(ii)	Calculate the charge of the ion.	
1	(iii)	charge	
		specific charge	

June 14 Q2

2 (a) Table 2 contains data for four different nuclei, P, Q, R and S.

Table 2

Nuclei	Number of neutrons	Nucleon number
P	5	11
Q	6	11
R	8	14
S	9	17

2	(a) (i)	Which nucleus contains the fewest protons?	[1 mark]
2	(a) (ii)	nucleus Which two nuclei are isotopes of the same element? nuclei	[1 mark]
2	(a) (iii)	State and explain which nucleus has the smallest specific charge.	2 marks]
2	(a) (iv)	Complete the following equation to represent β^- decay of nucleus R to form nucleus Γ	icleus X. 3 marks]
		$^{14}_{6}R \rightarrow \qquad X + \qquad + \dots + \dots$	

2 (b) (i)	The strong nuclear force is responsible for keeping the protons and neutrons bound in a nucleus. Describe how the strong nuclear force between two nucleons varies with the separation
	of the nucleons, quoting suitable values for separation. [3 marks]
2 (b) (ii)	Another significant interaction acts between the protons in the nucleus of an atom. Name the interaction and name the exchange particle responsible for the interaction. [2 marks]
	Interaction
	Exchange particle

June 15 Q1

Table 1 contains five statements that refer to isotopes and some radium isotopes. 1

Table 1

	²²³ ₈₈ Ra	²²⁴ ₈₈ Ra	²²⁵ ₈₈ Ra	²²⁶ ₈₈ Ra
Isotope with the smallest mass number	✓			
Isotope with most neutrons in nucleus				
Isotope with nucleus which has the largest specific charge				
Isotope decays by β^- decay to form $^{225}_{89}Ac$				
Isotope decays by alpha decay to form $^{220}_{86} Rn$				

Isotope decays by β ⁻ decay to form $^{225}_{89}{\rm Ac}$							
	Isoto	pe decays by alpha decay to form $^{220}_{86}\mathrm{Rn}$					
1 (a) Complete Table 1 by ticking one box in each row to identify the appropriate is The first row has been completed for you.			e isotope. [4 ma				
1 (1 (b) (i) An atom of one of the radium isotopes in Table 1 is ionised so that it has a charge of $+3.2 \times 10^{-19}$ C.				charge o	of	
		State what happens in the process of ionising the	is radium	atom.		[1 m	nark]
1 (b) (ii)	The specific charge of the ion formed is 8.57×1	0 ⁵ C kg ⁻	1.			
	Deduce which isotope in the table has been ionised. Assume that both the mass of a proton and the mass of a neutron in the nucleus is 1.66×10^{-27} kg.			a arke1			

[3 marks]

icotopo -	
isotope =	

June 16 Q1

- 1 The element uranium has an isotope ²³⁷₉₂U.
- 1 (a) Explain what is meant by an isotope.

[2 marks]

1 (b) Determine the charge in coulomb of the $^{237}_{92}$ U nucleus.

[2 marks]

charge = ______ C

1 (c) A positive ion of $^{237}_{92}$ U has a charge of +4.80 × 10⁻¹⁹ C. Determine the number of electrons in the ion.

[2 marks]

number of electrons =

1 (d) $^{237}_{92}$ U decays by β^- emission to form an isotope of neptunium (Np). Complete the equation for this decay.

[3 marks]

$$^{237}_{92}U \longrightarrow ^{---}Np + ^{--}\beta^- + ___$$