June 12 Q1

1	а	i	two from: velocity, acceleration, force etc ✓	1
1	а	ii	two from: speed, distance, mass etc ✓	1
1	b	i	B: drag / air resistance ✓	2
			C: weight ✓	2
1	b	ii	closed triangle (of vectors) ✓	
			so forces are in equilibrium / resultant force is zero /	2
			forces balance (so moving at constant velocity) ✓	
			1	
1	с		W = 9500 sin 74 ✓	
			= 9100 ✓ (9132)	3
			2 sf ✓	
2	а		GPE to KE to GPE ✓	
			no energy lost (from system) / no work done against resistive forces \checkmark	
				3
			initial GPE = final (GPE) / initial (GPE) = final GPE	-
			OR $h = GPE / mg$ and these are all constant so h is the same \checkmark	
			1	

June 13 Q2

2	а	i	$(s = \frac{1}{2}gt^{2})$ $1.5 = \frac{1}{2}9.81t^{2} \text{ OR } t = \sqrt{\frac{2s}{g}} \text{ OR } t = \sqrt{\frac{2\times1.5}{9.81}} \checkmark$ $(= 0.553) = 0.55 \text{ (s) } \checkmark$	2	Allow g=10 (0.5477) 0.6 gets 2 marks only if working shown. 0.6 on its own gets 1 mark.
2	а	ii	$(s = v t = 430 \times 0.553 = 237.8 =)$ 240 (m) \checkmark ecf a(i)	1	
		1	their vertical motion is independent of their horizontal		
2	b		Their vertical motion is independent of their holizontal motion OR downward /vertical acceleration is the same for both OR acceleration due to gravity is the same for both OR vertical speed/velocity is the same for both OR vertical speed/velocity is the same for both (bullets A and B will be in the air) for the same time \checkmark (Horizontal acceleration is zero and thus horizontal) distance is proportional to horizontal speed OR $s = ut$ where u is the horizontal velocity \checkmark	3	Allow 'time is constant' Don't allow 'similar' 'velocity smaller so distance smaller' is not sufficient

June 13 Q3

3	а	vol = $\frac{4}{3}\pi 0.011^3$ = (5.5753) 5.6×10 ⁻⁸ (m ³)√ (m = ρV) (= 8100 × 5.575×10 ⁻⁶ =) 0.045 (kg) ✓ ecf from first part candidate's mass x g (W = 0.045160 × 9.81 = 0.44302 = 0.44 N) ✓ any 2sf ✓	4	Allow use of g = 10 0.36kg , 3.5N from use of diameter rather than radius (max 3 from 4)

3	b	i	The candidate's writing should be legible and the spelling, punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria. High Level (Good to excellent): 5 or 6 marks The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question.	5-6	
			 Mentions all of the following: velocity (or speed) increases and then becomes constant (terminal velocity) acceleration reduces to zero forces become equal / balanced weight (allow 'gravity') and drag/friction correctly identified 		

			 For 6 marks: In addition to the above, two of the following: drag force increases with speed (weight /downward force initially) greater than drag/friction etc resultant force causes acceleration Resultant force = W – drag acceleration = gradient acceleration is maximum (9.81) at the beginning 		
3	b	ì	Intermediate Level (Modest to adequate): 3 or 4 marks The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate.	3-4	
			Mentions the two following points: • <u>velocity (or speed)</u> increases OR <u>velocity (or speed)</u> becomes constant / terminal velocity reached • acceleration decreases OR acceleration becomes zero		
			AND for 3 marks: mentions one more valid point from the 4 above or from the 7 below: for 4 marks: at least two additional points with at least <u>one from the 'Forces' list</u>		

[T
	 acceleration = gradient acceleration is maximum (9.81) at the beginning 		
	 Forces weight greater than drag (before terminal velocity) there is a resultant force downwards (before terminal velocity) forces become equal/ balanced / drag = weight drag force increases with speed. Resultant force = W - drag 		Poor QWC may result in award of the lower mark within a band
	Low Level (Poor to limited): 1 or 2 marks The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate.	1-2	Max 3 for mention of deceleration or increasing acceleration
	One valid point from list below For two marks: Two valid points The explanation expected in a competent answer should include a coherent selection of the following points concerning the physical principles involved and their consequences in this case. Mention of the points below may influence the mark given within each category: • velocity increases • velocity becomes constant (terminal velocity) • acceleration is maximum (9.81) at the beginning • acceleration decreases (to zero) • weight greater than drag (before terminal velocity		Several serious misconceptions may reduce a 2 mark answer to 1

	 there is a resultant force downwards (before terminal velocity) forces become equal/ balanced / drag = weight drag force increases with speed. resultant force = W - drag acceleration = gradient valid point explaining why rapid decrease in velocity occurs when ball hits bottom of container. E.g. resultant upward force (decelerates the ball) 		
3 b ii	Image: Straight line with positive gradient from origin to first dotted line ✓ descending line (curved or straight but non-vertical) starting from a point on first dotted line (must not have negative velocity at any point) and the line may then become horizontal ✓ curved line descending from first dotted line which is a continuation of the initial line (the gradient must be decreasing initially (a curve) and the line may then become horizontal ✓ AND extending up to second dotted line (with positive non-zero velocity) AND no incorrect continuation of line beyond second time line ✓ OR straight line with positive gradient from origin to first dotted line ✓ AND ascending <u>curved</u> line with positive gradient decreasing, starting from a point on first dotted line (continuation of first line) ✓ extending up to second dotted line AND ascending <u>curved</u> line with positive gradient from origin to first dotted line AND ascending <u>curved</u> line with positive gradient decreasing, starting from a point on first dotted line (continuation of first line) ✓	3	 3rd mark: Allow lines that become straight with a constant negative gradient after a curve. Vertical line at the end is not necessary. End of line must be between start of 'e' in 'time' and end of 'w' in 'when'. Allow correct lines beyond the second time line: continuous zero velocity or falling below x axis and rising back to x axis (bouncing) but not reaching a higher speed than descent

June 14 Q2

2	а	i	Use of $\left(s = \frac{1}{2}gt^2\right)$ OR $t^2 = \frac{2s}{g} \checkmark$ $t = \sqrt{\frac{2 \times 1.2}{9.81}} \checkmark$ $= 0.49 (0.4946 \text{ s}) \checkmark$ allow 0.5 do not allow 0.50	3	Some working required for full marks. Correct answer only gets 2
2	а	ii	(s= vt) = 8.5 x 0.4946 ✓ ecf ai = 4.2 m ✓ (4.20) ecf from ai	2	
2	b	i	$ \begin{pmatrix} s = \frac{1}{2} (u + v) t \end{pmatrix} $ $ t = \frac{2s}{u(+v)} $ or correct sub into equation above $\checkmark $ $ = \frac{2 \times 0.35}{8.5} = 8.2 \times 10^{-2} $ (s) $\checkmark $ (0.0824) allow 0.08 but not 0.080 or 0.1	2	Allow alternative correct approaches
2	bii		 a = (v-u) /t OR correct substitution OR a= 103 ✓ (= -8.5) / 8.24 x 10⁻² = 103.2) (F = ma =) 75 x (103.2) ✓ ecf from bi for incorrect acceleration due to arithmetic error only, not a physics error (e.g. do not allow a = 8.5. Use of g gets zero for the question. = 7700 N ✓ (7741) ecf (see above) 	3	Or from loss of KE Some working required for full marks. Correct answer only gets 2

June 15 Q1

	velocity	speed	distance	displacement	1			
1a	vector velocity	speeu	uistance	uispiacement			2	
			✓					
	scalar	~	~					
1bi	$v^2 = u^2 + 2as$ $v = \sqrt{u^2 + 2as}$ $= (-)3.9 \text{ (m s}^{-1}) \checkmark 1$	√ wo or more		= √ 1.5² + 2 × 9.81 I (- 3.87337 m s ⁻¹)	× 0.65 ✓	1 st mark for equation rearranged to make v the subject (note sq' root may be implied by a later calculation) penalise the use of $g = 10 \text{ m s}^2$ only on this question 2 nd mark for substituting numbers into any valid equation 3 rd mark for answer Alt' approach is gainKE=lossPE Missing out <i>u</i> gives zero marks Answer only gains one mark [Note it is possible to achieve the correct answer by a wrong calculation]	3	
1bii	velocity / ms ⁻¹ 4 3 2 1 1 0 -1 -2 -3 -3 -4 first line descends t (allow line to curve) first line is straight division) second line has sai (tolerance ½ divisio	and descend	ls from X to v	= -4 (m s ⁻¹) √(allo	w tolerance one		3	

1c	$\frac{1}{2s}$ operated with the state of $\frac{1}{2\times 1.2}$	working must be shown for the first mark but not the subsequent marks.	3	
		[Note it is possible to achieve the correct answer by a wrong calculation]		

June 15 Q3

3ai	$ \begin{array}{l} (a = (v - u) / t) \\ = 27.8 (-0) / 4.6 = 6.04 \checkmark \\ = 6.0 (ms^{-1}) \checkmark \end{array} $	no need to see working for the mark 2 sig fig mark stands alone	2	
3aii	(F = ma) = (360 + 82) x 6.0(4) ✓ (allow CE from 3ai) = 2700 (N) ✓ (2670 N or 2652 N)	$F = 442 \times a(i)$ 1 mark may be gained if mass of rider is ignored giving answer 2200N from 2175N	2	
3b	(forward force would have to) increase ✓ air resistance/drag increases (with speed) ✓ <u>driving/forward</u> force must be greater than resistive/drag force✓ (So that) <u>resultant/net</u> force stayed the same / otherwise the <u>resultant/net</u> force would decrease ✓	no mark for wind resistance	4max3	
3с	 <u>horizontal</u> force arrows on both wheels towards the <u>right</u> starting where tyre meets road or <u>on the axle</u> labelled driving force or equivalent ✓ A <u>horizontal</u> arrow to the <u>left</u> starting <u>anywhere</u> on the vehicle labelled drag/air resistance ✓ 	ignore the actual lengths of any arrows ignore any arrows simply labelled 'friction' no mark for wind resistance, resistance or friction force the base of an arrow is where the force is applied	2	
3d	(<i>F</i> = <i>P</i> / <i>v</i>) = 22 000/ 55✓ Condone 22/55 for this mark = 400 ✓ (N)		2	

June 16 Q2

2(a)(i)	(using sin 25° = V_y/V $V = V_V / \sin 25^\circ$) = 5.0 / sin 25° \checkmark 11.8 (m s ⁻¹) \checkmark (working and answer is required)	Look out for cos 65° = sin 25° in first mark. Also calculating the horizontal component using cos 25° followed by Pythagoras is a valid approach. Working backwards is not acceptable.	2	
2(a)(ii)	$\begin{array}{l} (\text{using tan } 25^\circ = V_V / V_H \) \\ V_H = V_V / \tan 25^\circ \checkmark \\ = 5 / \tan 25^\circ = 11 \ (\text{m s}^{-1}) \checkmark (10.7 \ \text{m s}^{-1}) \\ \text{Or (using cos } 25^\circ = V_H / V \) \\ V_H = V \cos 25^\circ \checkmark = 11.8 \ \cos 25^\circ = 11 \ (\text{m s}^{-1}) \checkmark (10.7 \ \text{m s}^{-1}) \\ \text{Or (using } V_H^2 + V_V^2 = V^2 \) \\ V_H^2 + 5^2 = 11.8^2 \checkmark (0r \ 12^2) \\ V_H = 11 \ (\text{m s}^{-1}) \checkmark (10.7 \ \text{m s}^{-1}) \end{array}$	Note $1/\cos 65^\circ = \sin 25^\circ$ and $\tan 25^\circ = 1/\tan 65^\circ$ Rounding means answers between 10.7 and 11 m s ⁻¹ are acceptable.	2	
2(b)(i)	(using $v^2 = u^2 + 2as$ with up being positive 0 = 5.0 ² + 2 × -9.81 × s) s = 1.3 (m) ✓ (1.27→1.28 m) or (loss of KE = gain of PE ½ m $v^2 = mgh$ ½ 5.0 ² = 9.81 x h) h = 1.3 (m) ✓ (1.27→1.28 m) quoted to 2 sig figs ✓	for the sig fig mark the answer line takes priority. If a choice of sig figs given and not in answer line – no sig fig mark Sig fig mark stands alone provided some working is shown	2	
2(b)(ii)	(using $s = (u + v)t/2$) or horizontal distance = speed × time) $s = 11 \times 1.3 = 14$ (m) \checkmark (using 10.7 gives the same answer)	allow CE $s = (aii) \times 1.3$ but working must be seen	1	
2(c)(i)	A marked at the point of landing or immediately before \checkmark	The A or its marked position must not be further to the left than the 'c' in the word 'scale'.	1	

2(c)(ii)	B marked at the maximum height of the path ✓	The B must lie vertically between the 'r' and 'a'	1	
		in the word 'resistance above figure 2.		

2(d) <u>straight</u> line from point given down to point $t_{\rm H}$ on the axis \checkmark <u>straight</u> line starting where first line stops ($t_{\rm H}$) but with opposite gradient to the first line \checkmark ^{magnitude} ^{ovelocity} ^{initial value} ^o ^o ^t _i time	 (A measure of accuracy for the second mark) The second line must end (t_F) between the height of the vertical axis and half this height. Obviously straight lines drawn by hand are acceptable. 	2	
--	--	---	--

June 16 Q3

3(a)	(using <i>F</i> = <i>ma</i>) <i>a</i> (= <i>F/m</i>) = 1400 / (any mass/masses taken from the table) ✓ (any arrangement gains mark) = (1400/(2600 + 2900 + 1300) = 0.206 m s ⁻²) = 0.21 (m s ⁻²) ✓	Allow any single or combination of masses from the table for first mark. 0.21 m s ⁻² on its own gains 2 marks but 0.2 m s ⁻² on its own gains 1 mark 1 sig fig is not acceptable	2	
3(b)(i)	they have the same line of action they have the same <u>magnitude</u> (not size) the forces are of the same kind ✓ any one statement	The statement must be of a general nature. The statement 'equal magnitude + opposite direction does not make the similarity clear and so gains zero marks. If forces act against each other or cancel or act on the same body this mark is lost.	1	
3(b)(ii)	they are in <u>opposite directions</u> they act on different bodies ✓ any one statement	The statement must be of a general nature. If forces act against each other or cancel or act on the same body this mark is lost.	1	
3(c)	they do not have the same magnitude/size the forces are of different types they do not act on different bodies drag is <u>greater</u> than the weight there is a resultant force (as deceleration occurs) ✓ any one statement	Statements can be written negatively	1	
3(d)	actual deceleration (= F/m) = 670 / 890 = 0.75 (m s ⁻²) \checkmark (0.753 m s ⁻²) minimum required deceleration = $\Delta v / \Delta t = (5.5 - 3.0) / 3.5$ = 0.71 (m s ⁻²) \checkmark (0.714 m s ⁻²) therefore (compared to 0.75 m s ⁻²) there is sufficient deceleration, yes \checkmark Or actual deceleration	ignore any interchange between acceleration and deceleration	3	

(F = ma) = 0.4 x 4.59 ✓ = (1.84 N)