Ju	ne	12	01
Ju			~ -

1	(a)	The K ⁻ meson has strangeness -1.
1	(a) (i)	State the quark composition of a meson.
1	(a) (ii)	(1 mark) State the baryon number of the K ⁻ meson.
1	(a) (iii)	(1 mark) What is the quark composition of the K ⁻ meson?
		(1 mark)
1	(b)	Figure 1 shows a Feynman diagram for a possible decay of the strange quark.
		Figure 1
		$\frac{1}{\sqrt{v_e}}$
1	(b) (i)	Which interaction is responsible for this decay?
		(1 mark)
1	(b) (ii)	Energy and momentum are conserved when the W ⁻ particle is produced. State two other quantities that are also conserved and one that is not.
		conserved
		conserved
		not conserved

1 (b) (iii) Comple	te this equation for the decay of	of a K ⁻ meson.	
	K ⁻ -	→++		
				(2 marks)
une 12	Q3			
3 (a)	interaction		gravity and by two other fundamentify these interactions and name	
		interaction	exchange particle	
				(2 marks)
3 (b)	State the	quark composition of a proto	n.	
	•••••			(1 mark)

3 (c)	A change in quark identity is involved in <i>electron capture</i> .		
3 (c) (i)	Explain what is meant by electron capture.		
	(3 marks)		
3 (c) (ii)	In the space below draw a Feynman diagram representing electron capture.		

(3 marks)

Jan 13 Q2

2	Under certain circumstances it is possible for a photon to be converted into an electron and a positron.
2 (a)	State what this process is called.
	(1 mark)
2 (b)	A photon must have a minimum energy in order to create an electron and a positron.
	Calculate the minimum energy of the photon in joules. Give your answer to an appropriate number of significant figures.
	minimum energy = J (3 marks)
2 (c)	A photon of slightly higher energy than that calculated in part (b) is converted into an electron and a positron.
	State what happens to the excess energy.
	(1 mark)
2 (d)	Describe what is likely to happen to the positron shortly after its creation.
	(2 marks)

Jan 13 Q3

3 (a) (i)	State how many quarks there are in a baryon.
	(1 mark)
3 (a) (ii)	Hadrons fall into two groups, baryons being one of them.
	State the name that is given to the other group of hadrons.
	(1 mark)
3 (a) (iii)	Give two properties of hadrons that distinguish them from leptons.
	property 1
	property 2
	(2 marks)
3 (b)	The forces between particles can be explained in terms of exchange particles.
	Complete the following table by identifying an exchange particle involved in the interaction.

interaction	exchange particle
electromagnetic	
weak	

(2 marks)

3 (c)	The following equation shows electron capture.
		$p + e^- \rightarrow n + \nu_e$
3 (c) (i)	Draw a Feynman diagram that represents this interaction.
		(3 marks)
3 (c) (ii)	Explain why, when electron capture occurs, a neutrino rather than an antineutrino is produced.
		(1 mark)
		(2 many

June 13 Q2

2 A positron is emitted from a nucleus when a proton changes to a neutron in the nucleus. The Feynman diagram for the quark interaction is shown in Figure 1.

Figure 1

2 (a)	Identify the particles labelled A, B, C and D in the diagram.	
	Α	
	В	
	C	
	D	(3 marks)
2 (b) (i)	State the interaction responsible for this process.	
		(1 mark)
2 (b) (ii)	State which letter in Figure 1 represents an exchange particle.	
		(1 mark)
2 (b) (iii)	State one difference between this exchange particle and a photon.	
		(1 mark)

2 (c)	Energy and momentum have to be conserved in this process. State two other quantities that need to be conserved and show that they are conserved in the process.
	quantity 1
	quantity 2
	(4 marks)

June 13 Q3

- 3 (a) Hadrons and leptons are two groups of particles.
 Write an account of how particles are placed into one or other of these two groups.
 Your account should include the following:
 - · how the type of interaction is used to classify the particles
 - · examples of each type of particle
 - · details of any similarities between the two groups
 - · details of how one group may be further sub-divided.

The quality of your written communication will be assessed in your answer.		

3 (b)	Every type of particle has a corresponding antiparticle.	
3 (b) (i)	Give one example of a particle and its corresponding antiparticle.	
	particle	
	antiparticle	
		(1 mark)
3 (b) (ii)	State one difference between this particle and its antiparticle.	
		(1 mark)

June	14	01
Julic		$\mathbf{u}_{\mathbf{J}}$

1	(a)	The	The positive kaon, K ⁺ , has a strangeness of +1.				
1	(a) (i)	Wha	What is the quark structure of the K+?				[1 mark]
1	(a) (ii)	Wha	What is the baryon number of the K ⁺ ?				
1	(a) (iii)	Wha	t is the antiparticle	of the K ⁺ ?			[1 mark]
1	(b)	The	K ⁺ may decay into			the following way.	
1	(b) (i)	·					[3 marks]
			Classification	K ⁺	v_{μ}	μ+	
			lepton	×	✓	✓	
			charged particle				
			hadron				
			meson				
1	(b) (ii)	Give	is decay, charge, e another quantity th	hat is conserved	d in this decay a	nd one that is not	[2 marks]
		Conserved					
		Not conserved					

1 (c) Another possible decay of the K⁺ is shown in the following equation,

$$K^+ \to \pi^+ + X$$

1 (c) (i) Identify X by ticking one box from the following list.

[1 mark]

electron	
muon	
negative pion	
neutral pion	
neutrino	
neutron	
positron	

1 (c) (ii) Give one reason for your choice in part (c)(i).

Г4	ma	ᆔ
	IIIa	IМ

June 15 Q2

2	The equation shows an interaction between a proton and a negative kaon that results in
	the formation of particle, X.

$$K^- + p \rightarrow K^+ + K^0 + X$$

2 (a) (i)	State and explain whether X is a charged particle.	[2 marks]
2 (a) (ii)	State and explain whether X is a lepton, baryon or meson.	[2 marks]
2 (a) (iii)	State the quark structure of the K^- , K^+ and the K^0 . $K^- = K^+$	[3 marks]
2 (a) (iv)	K^0	

June 15 Q3

3 (a) Baryons, mesons and leptons are affected by particle interactions.

Write an account of these interactions. Your account should:

- · include the names of the interactions
- · identify the groups of particles that are affected by the interaction
- identify the exchange particles involved in the interaction
- give examples of two of the interactions you mention.

The quality of your written communication will be assessed in your answer.	[6 marks]

AQA 1 Questions – Particles (set 2)					
3 (b)	Draw a labelled Feynman diagram that represents a particle interaction. [3 marks]				

June 16 Q2

- The positive kaon (K+) has a strangeness of +1.
- 2 (a) Which of the following is the quark composition of the positive kaon? Tick (✓) the correct answer.

[1 mark]

	✓ if correct
ūs	
นนริ	
us	
dds	

2 (b) The equation shows a possible decay of the positive kaon.

$$K^+ \, \longrightarrow \, \mu^+ \, + \, \nu_\mu$$

2 (b) (i) Show that lepton number is conserved in this decay.

[1 mark]

2 (b) (ii) State a quantity that is not conserved in this decay.

[1 mark]

2 (b) (iii) Complete the following table using ticks to indicate correct classifications for each particle. The first column has been completed for you.

[3 marks]

	Charged	Hadron	Meson	Baryon	Lepton
K ⁺	✓				
μ+	✓				
ν_{μ}					

2 (C)	The positive kaon can also decay to form a π^* and one other particle A .	
	Deduce the identity of X.	[3 marks]

June 16 Q3		
3	Under certain conditions a photon may be converted into an electron and a positron.	
3 (a)	State the name of this process. [1 mark]	
3 (b)	For the conversion to take place the photon has to have an energy equal to or greater than a certain minimum energy.	
3 (b) (i)	Explain why there is a minimum energy. [2 marks]	
3 (b) (ii)	Show that this minimum energy is about 1 MeV. Use values from the Data and Formulae Booklet. [1 mark]	
3 (b) (iii)	Explain what happens to the excess energy when the photon energy is greater than the minimum energy. [1 mark]	

3	(b) (iv)	A photon has an energy of 1.0 MeV.
		Calculate the frequency associated with this photon energy. State an appropriate unit in your answer.

[4 marks]

frequency = _____ unit = ____